

中国科学院软件研究所学术年会'2018 暨计算机科学国家重点实验室开放周

Motivation

Synchronous data flow graphs (SDFGs)

- ✓ Nodes (actors) model the computations ✓ Edges (FIFO channels) model data dependency between actors
- \checkmark E.g. an iteration of G_1 includes one firing of actor A, two firings of B and four of C Iteration period (IP)

 \checkmark the average computation time per iteration

 \checkmark the reciprocal of the throughput.

Different memory abstractions may lead to different achievable IPs

Schedules of *G1* with buffer bound 4 on edge <A,B> and 2 on <B,C>

- tokens is claimed at the start of the firing
- released at the end of the firing.

A schedule of G1 with IP = 1/thr. = 10

Problem & Solution(1)

Memory abstraction xy

- \checkmark x=1, release space at the start of a firing; x=0, at the end of a firing;
- \checkmark y=1, claim space at the start of a firing; y=0, at the end of a firing.

A memory constraint of SDFG G = (V,E) is a vector MC(E), in which MC(e)>d(e). $IP_{xy}(G,MC)$ is the minimal achievable IP of SDFG G = (V,E) under memory constraint MC(E) based on the memory abstraction xy. Then $1/IP_{xv}(G,MC)$ is the maximal achievable throughput.

Given an SDFG G and a memory constraint MC, $IP_{xv}(G,MC) =$

Memory-constrained SDFG (MC SDFG)

 \checkmark The bound on buffer of an edge <u,v> of an SDFG can be modeled by adding edge <v,u> with tokens to model available storage space Edge <v,u> is called a MC edge

An self-timed execution (STE) analysis method is used in our solutions

Instead of using a clock in the operational semantics of SDFGs as traditional STE analysis methods [3, 4], we use time stamps on tokens to model the time progress. Each token is tagged with a time stamp to indicate the time when it is produced.

20 – The IPs are concerned to the IPs are conc	omputed under onder on obtained by the	different MCs, method in [3],	which are storag which is under	ge distributions o the abstraction <i>x</i>	f the y=01.		
24 -							
20		Graph Information					
	name	CEer	MaxES	Mp3	SaRate	Satellit	
32 Number of actors IP Number of edges	5 V	22	13	4	6	2	
	E	42	13	4	5	2	
	nQ	42	1288	10601	612	451	
Number of firings in one iteration	MC	73	1065	1980	32	154	
		With Auto-concurrency (IP/imp. compare with IP_{01})					
memory constraint	IP ₀₁	47128	9216	352584	1029	57	
	IP_{00}	47128/0%	8192/11%	117914/67%	392/62%	336/429	
	IP_{11}	47128/0%	8192/11%	236160/33%	735/29%	336/429	
	IP_{10}	47128/0%	683.7/93%	116424/67%	0/100%	96/839	
		Without Auto-concurrency (IP/imp. compare with IP ₀₁)					
	IP_{01}	47128	9216	352584	1088	132	
	IP_{00}	47128/0%	8447/8%	120000/66%	960/12%	1056/209	
	IP_{11}	47128/0%	8192/11%	236160/33%	960/12%	1056/209	
	IP_{10}	47128/0%	8192/11%	120000/66%	960/12%	1056/20%	
		C 1 1 1		1 .1 1			

The proposed analysis framework is helpful for implementation according to schedules based on different abstractions.

We have extended the proposed technique to CSDF graphs, but omit them here because of space limitations.

- When the release time of consumed tokens is set to the end of the firing, i.e. x = 0, these time stamps are tagged with *B.et*, e.g. states s_{01} and s_{00} ; otherwise, they are tagged with *B.st*, e.g. states s_{11} and s_{10} .
- \checkmark Abstraction y affects the start time of a firing. When the required space is claimed at the start of the firing, i.e. y = 1, B.st is set to be the largest time stamp of the required tokens for the firing, e.g. *fire₀₁* and *fire₁₁*. Otherwise, the largest time stamp of the required tokens for the firing can be seen as the end time of the firing, i.e. B.et, then B.st = B.et t(B), e.g. *fire*₀₀ and *fire*₁₀.

Similar to the methods in [3, 4], the $IP_{xy}(G,MC)$ can be computed via the STE according to firing rules *fire*_{xv}.

Abstract:

Streaming applications are often modeled with Synchronous data flow graphs (SDFGs). A proper analysis of the models is helpful to predict the performance of a system. In this paper, we focus on the throughput analysis of memory-constrained SDFGs (MC SDFGs), which needs to choose a memory abstraction that decides when the space of consumed data is released and when the required space is claimed. Different memory abstractions may lead to different achievable throughputs. The existing techniques, however, consider only a certain abstraction. If a model is implemented according to other abstractions, the analysis result may not truly evaluate the performance of the system. In this paper, we present a unified framework for throughput analysis of MC SDFGs for difference abstractions, aiming to provide evaluations matching up to the corresponding implementations.

References

[1] SS Bhattacharyya, PK Murthy, and EA Lee. 1996. Software synthesis from dataflow graphs. Vol. 360. Springer. [2] EA Lee and DG Messerschmitt. 1987. Static scheduling of synchronous data flow programs for digital signal processing. IEEE Trans. on Computers 36, 1, 24–35. [3] S Stuijk, M Geilen, and T Basten. 2008. Throughput-buffering trade-off exploration for cyclo-static and synchronous dataflow graphs. IEEE Trans. on Computers 57, 10, 1331–1345. [4] XY Zhu, M Geilen, T Basten, and S Stuijk. 2014. Memory-Constrained Static Rate-Optimal Scheduling of Synchronous Dataflow Graphs via Retiming. In Proc. of DATE 2014. 1–6.

Xue-Yang Zhu. A Unified Framework for Throughput Analysis of Streaming Applications under Memory Constraints. In Proc. Of the 22nd International Conference on Engineering of Complex Computer Systems (ICECCS 2017). Fukuoka, Japan, 6-8 Nov., 2017. Pp.128-137.

Xue-Yang Zhu. A Unified Framework for Throughput Analysis of Synchronous Data Flow Graphs under Memory Constraints: Work-in-Progress. In Proc. of CODES/ISSS ' 17 Companion (part of ESWEEK 2017), Seoul, Republic of Korea, October 15–20, 2017. Article No. 2.